Skip to content

Lan NguyenΒΆ

Self-Service Fractional GPU Memory with Rafay GPU PaaS

In Part-1, we explored how Rafay GPU PaaS empowers developers to use fractional GPUs, allowing multiple workloads to share GPU compute efficiently. This enabled better utilization and cost control β€” without compromising isolation or performance.

In Part-2, we will show how you can enhance this by provide users the means to select fractional GPU memory. While fractional GPUs provide a share of the GPU’s compute cores, different workloads have dramatically different GPU memory needs. With this update, developers can now choose exactly how much GPU memory they want for their pods β€” bringing fine-grained control, better scheduling, and cost efficiency.

Fractional GPU Memory

Self-Service Fractional GPUs with Rafay GPU PaaS

Enterprises and GPU Cloud providers are rapidly evolving toward a self-service model for developers and data scientists. They want to provide instant access to high-performance compute β€” especially GPUs β€” while keeping utilization high and costs under control.

Rafay GPU PaaS enables enterprises and GPU Clouds to achieve exactly that: developers and data scientists can spin up resources such as Developer Pods or Jupyter Notebooks backed by fractional GPUs, directly from an intuitive self-service interface.

This is Part-1 in a multi-part series on end user, self service access to Fractional GPU based AI/ML resources.

Fractional GPU